Reducing the mean squared error of quantile-based estimators by smoothing
نویسندگان
چکیده
منابع مشابه
The Asymptotic Mean Squared Error of L-smoothing Splines
We establish the asymptotical equivalence between L-spline smoothing and kernel estimation. The equivalent kernel is used to derive the asymptotic mean squared error of the L-smoothing spline estimator. The paper extends the corresponding results for polynomial spline smoothing.
متن کاملNon-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators
Small area estimation is conventionally concerned with the estimation of small area averages and totals. More recently emphasis has been also placed on the estimation of poverty indicators and of key quantiles of the small area distribution function using robust models for example, the M-quantile small area model (Chambers and Tzavidis, 2006). In parallel to point estimation, Mean Squared Error...
متن کاملRoot Mean Squared Error
• Predictive Accuracy Measures. These measures evaluate how close the recommender system came to predicting actual rating/utility values. • Classification Accuracy Measures. These measures evaluate the frequency with which a recommender system makes correct/incorrect decisions regarding items. • Rank Accuracy Measures. These measures evaluate the correctness of the ordering of items performed b...
متن کاملMean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data
We consider the nonparametric regression model with long memory data that are not necessarily Gaussian and provide an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators. We show this MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel...
متن کاملCompetitive Mean-Squared Error Beamforming
Beamforming methods are used extensively in a variety of different areas, where one of their main goals is to estimate the source signal amplitude s(t) from the array observations y(t) = s(t)a + i(t) + e(t), t = 1,2,..., where a is the steering vector, i(t) is the interference, and e(t) is a Gaussian noise vector [1, 2]. To estimate s(t), we may use a beamformer with weights w so that s(t) = w*...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TEST
سال: 2012
ISSN: 1133-0686,1863-8260
DOI: 10.1007/s11749-012-0293-3